<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Preclinical Consulting Services

Learn more about how our consulting services can help to support your journey to the clinic.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

BET on Combination Therapy to Fight HER2 positive Breast Cancer Escaping Treatment

Breast cancer accounts for one quarter of all cancer cases, resulting in over half a million deaths worldwide per year. Fifteen to twenty percent of all breast cancer diagnoses belong to the HER2 positive subtype. Only about one-third of these patients respond well to standard therapy. But even patients that initially respond eventually develop resistance. Using HER2 positive human breast cancer cell lines, researchers at the University of North Carolina discovered one of the mechanisms underpinning drug resistance in breast cancer and found a way to prevent it from occurring.

Breast cancer is the leading type of cancer diagnosed in women worldwide. About one in five cases shows amplification of the human epidermal growth factor receptor 2 (HER2) gene, which is more prevalent in young women. HER2 positive breast cancers are more aggressive and spread more quickly than other types because HER2 is capable of driving tumor cell replication. Anti-HER2 therapies focus on the inhibition of the receptor’s kinase activity to switch off its growth promoting function and they often produce long periods of remission in early stage breast cancer. However, repetitive exposure to the drug over the course of several chemotherapy cycles or the presence of metastases may result in the rapid emergence of resistance.

Lapatinib is one of the HER-2 inhibitors currently used in the clinic that functions by silencing its kinase activity. Protein kinases are vital components of any cell for performing a multitude of different tasks and their ubiquitous inhibition is very toxic. Switching off one kinase at the time, trying to avoid this toxicity is not a valid long term alternative because cancer cells develop the ability to shift to other kinase signaling nodes. This cancer cell behavior drives patients into relapse and is known as “adaptive kinome reprogramming”.

BET Bromodomain Proteins Drive Cancer Cells to Resistance

Combination therapies, targeting more than one signaling at the time, are required to prevent the occurrence of drug resistance. Researchers at UNC School of Medicine and UNC Lineberger Comprehensive Cancer Center identified, using mass spectrometry, what pathways are activated to compensate for HER2 inhibition in cancer cells undergoing treatment. Surprisingly they discovered that, following lapatinib exposure, a defined set of other protein kinases become activated in vitro. More importantly these alternative signaling have a common upstream activator called BRD-4, a protein belonging to the BET family of bromodomain transcription factors that bind to DNA to allow the expression of their target genes. This discovery has a simple but important implication: in order to prevent HER2 positive cancer cells from developing drug resistance, it is necessary to prevent them from activating BET. BET inhibitors have been effective in AML treatment in mice and in in vitro studies and further validation is undergoing Phase I clinical trials. According to the results from the UNC study, one specific BET inhibitor, called JQ1, preferentially modulates the kinome reprogramming induced by lapatinib. By combining therapies that switch off HER2 kinase activity with BET inhibitors, UNC researcher were able to stop the growth of HER2 positive cancer cells and to restore long-term sensitivity of lapatinib-resistant cell lines in vitro. The team is now working on translating in vivo their findings using animal models that develop HER2 positive breast cancer.

Preclinical models are essential to explore the mechanisms of drug resistance and to provide a fast route from preclinical testing to clinical validation of new compounds. Crown Bioscience has developed several highly predictive breast cancer models for preclinical drug evaluation included in our HuPrime® and PDXact™ collections of patients derived xenografts (PDX). Our fully validated and extensively characterized PDX models can be employed in HuTrials, our surrogate Phase II mouse clinical trials to identify responder and non-responder populations, gene signatures and predictive biomarkers for patient stratification in the clinic using our HuSignature and our HuMark translational platforms. Our breast cancer services also include syngenic models, GEMM, and MuPrime™ models - allografts of spontaneous murine tumors, studied in fully immunocompetent mice.

Contact us at busdev@crownbio.com to talk to our experts about how Crown Bioscience can drive forward your breast cancer research today.


Related Posts