<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

Combination Therapies and Tumor Homograft Models

11

Representative preclinical tumor homograft model for assessing combination therapies including immunotherapy and targeted agentsLearn more about using tumor homograft models to assess oncology combination regimens, including immunotherapies.

What are Tumor Homograft Models?

Tumor homograft models are transplants of GEMM tumors in syngeneic hosts. They’re never passaged in vitro, preserving both disease-relevant mutations and tumor architecture relevant to the original tumor microenvironment. This means that tumor homografts broaden the selection of preclinical immunocompetent models available past your traditional syngeneic collections.

In this post, we’re focusing on how tumor homograft models can be used to assess combination immunotherapies, providing preclinical evidence to support downstream clinical development.

The Rise of Combination Immunotherapies

Immune checkpoint inhibitors (ICI) have revolutionized the cancer therapy landscape. ICI work by blocking proteins on the surface of tumors or immune cells that dampen the immune response. This enables the patient’s own immune system to better fight the disease.

However, while immune checkpoint therapies are efficacious in many patients, there’s still a significant patient population that don’t respond to treatment. There’s a pressing need to extend durable responses, both to more cancer types and to a wider selection of patients.

Combining Targeted Therapies with ICI

One way to address this unmet need is to combine ICI with targeted agents which are capable of establishing favorable tumor immune microenvironments. Targeted therapies tend to be rapidly effective in a broad patient population, but lack durability of response due to adaptive resistance to treatment. Combining these agents with ICI can provide the needed durability of response.

Additionally, recent research shows that deregulated cellular signaling pathways also have immunomodulatory effects on systemic and intratumoral antitumor immune response. This suggests that combining molecular targeted therapy with ICIs can result in synergistic antitumor effects.

Combining PARP Inhibitors with ICI

PARP inhibitors, such as talazoparib and olaparib, are known for their role in inhibiting DNA repair and inducing tumor cell death. Recent studies on PARP inhibitors also show they have the potential to modulate the tumor immune microenvironment. In tumor cells with BRCA mutations, synthetic lethality induced by PARP inhibition increases genomic instability and cell death. This, in turn, causes an increased neoantigen load and antitumor T cell response.

In a recent study, a new combination therapy rationale was explored – combining niraparib, a highly selective PARP1/2 inhibitor, and ICI. A variety of in vivo tumor models were used to investigate the combination effects, including tumor homografts. The models each carried characteristics such as BRCA proficiency or deficiency, niraparib sensitivity or resistance, and ICI resistance, which were used to answer different questions.

Combination Effects in Both BRCA Deficient and Proficient Tumors

The efficacy of combination niraparib + anti-PD-1 was first confirmed in BRCA-deficient tumors including BRKras (syngeneic) and MDA-MB-436 in NOG-EXL humanized models.

Combination efficacy was also evaluated in several BRCA-proficient tumors, including the SK6005, SA9003, and BL6078 tumor homografts. Interestingly, niraparib was able to enhance the effects of ICI in all BRCA-proficient tumors.

Notably, the SK6005 tumor homograft model was sensitive to 50mg/kg niraparib alone and the treatment led to the recruitment of immune cells to the tumor. When the niraparib dose was halved, the model was resistant to either niraparib or anti-PD-1 alone, but was responsive to the combination of agents.

The immunomodulatory effects of niraparib in both BRCA-proficient and deficient models included interferon pathway activation and increased immune cell infiltration. The authors surmise that these effects may be responsible for enhancing the effects of immune checkpoint blockade in this study.

There is an unmet need in the homologous-recombination-proficient population, so the fact that a PARPi was able to sensitize BRCA-proficient tumors to ICI provides a potentially positive outlook for patients.

In this elegant study, tumor homografts supported the currently tested clinical strategy of PARP inhibition with ICI therapies. The critical next step is to understand the patient populations that will benefit the most from this combination.

The Future of Targeted Agents and ICI Combinations

When moving forwards with new targeted agent and ICI combinations, it’s important to fully assess the safety of the regimen. Removing the breaks to the immune system or potentiating endogenous cytotoxic responses can have adverse toxicity effects.

Immune-related adverse effects have been observed in studies combining targeted agents and immunotherapy. For example, the combination of targeted therapy and ICI in EGFR-positive or EML4-ALK–positive NSCLC are often associated with increased toxicities, but not accompanied by clinical benefit. The combination of BRAF inhibitors with anti-CTLA-4 antibody has also led to concerning toxicities as well.

Therefore, it is crucial to test the timing and safety of these combinations at an early stage. Thoroughly interrogating different combination regimens in relevant preclinical models, such as tumor homografts, is key to successfully reaping the patient benefits of combined targeted therapies and ICIs.


Related Posts