<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

Identify Predictive Biomarkers Using Translational Preclinical Models

identify predictive biomarkers with a range of translational preclinical modelsExplore a variety of methods to identify predictive biomarkers using a range of translational preclinical models combined with robust analytical methods.

The Benefits of Early-Stage Biomarker Development

New strategies are needed to overcome the high attrition rates of anticancer agents in clinical development. One such method is to develop and validate robust and sensitive biomarkers early in the drug development process.

This allows researchers to gain in depth insights into agent’s mechanism of action and pharmacodynamic response. This then allows the most promising candidate therapies to be identified, and novel therapeutics to be tailored for specific patient populations and cancer indications, right from the earliest stages of development.

Early identification of biomarkers also helps to optimize clinical trial design through data informed decisions. Biomarkers identified early in preclinical development can be translated into the clinic as companion diagnostics (CDx), to stratify relevant patient populations for treatment.

These biomarker-driven approaches are fueling precision medicine to improve drug efficacy, patient safety, and to reduce the attrition rate of anticancer agents.

How to Identify Predictive Biomarkers Early in Oncology Drug Development

The key to early identification of biomarkers is to embed a systems biology approach early in drug development. This allows researchers to funnel therapeutics through in silicoin vitroex vivo, and in vivo models in an efficient way, reducing development timelines and maximizing data use. Optimal targets and preclinical models can then also be chosen and used.

To make all of this possible, you need access to large panels of highly characterized preclinical models, which fully capture the diversity in the oncology patient population. This then allows biomarker discovery from a range of different studies/model types including in vitro screening, unique in vivo patient-derived xenograft (PDX) models, and mouse clinical trials (MCTs).

Identifying Predictive Biomarkers from In Vitro Screening

One method to identify biomarkers is through in vitro screens, using cancer cell line panels or, more recently, tumor organoids. These screens are usually preliminary, followed by more in-depth functional and mechanistic in vivo studies.

Using large panels of well-characterized cell lines or organoids and a range of analyses it’s possible to gain an understanding of genetic signatures of response, and develop biomarkers to guide future in vivo model selection. This is achieved by correlating pharmacology screening data with genomic baseline information, such as gene expression, gene mutation, and copy number variation data as well as pathway/network activation information.

Multiple readouts from analyzing these screens include:

  • Single gene analysis – identifying single genes whose mutational status correlates with sensitivity.
  • Composite biomarker generation – constructing multi gene biomarker sets which predict sensitivity to an agent.
  • Pathway/network analyses – identifying signatures composed of gene sets/pathways that significantly differentiate sensitive and insensitive cell lines.

Overall, in vitro screening for biomarker discovery provides multiple tracks of unbiased, data driven statistical analysis for gene mutations, expressions, and in pathways. This lets you derive potential candidate biomarker sets to choose the right indication for your agent, and for early patient selection criteria.

Using PDX Models to Uncover Drug Mechanism of Action

Highly translational preclinical models can hold the key to confirming a drugs mechanism of action, which can corroborate clinical observations and provide prognostic biomarkers for the clinic.

Many targeted agents are highly useful for only small groups of patients – those with a specific genetic event like a mutation or fusion. These original genetic events are often lacking in in vivo models such as conventional cell line derived xenografts, as well as the later genetic driver events behind the acquired resistance common with targeted agent treatment.

When looking to confirm drug mechanism of action, clinical observations, or to study clinical resistance mechanisms, PDX models can be highly useful. PDX are derived directly from patient tumors (never adapted to grow on plastic), and therefore retain many features of human tumors including parental tumor histopathology and genetics. Large panels of PDX have now been characterized and collated in databases, making it easier to find clinically representative models with fairly rare or unique genetic features of interest.

These clinically relevant models are used as a first step in confirming agent activity against a genetic event, potentially compared against standard of care. This corroborates if your new drug is active against the mutation or fusion that you are targeting, confirming drug mechanism of action.

For assessing targeted agent resistance, some PDX have been developed directly from patient tumors, or other relevant models can be generated. By starting with a model harboring one genetic event, extended treatment with your agent or standard of care can generate a drug resistant model. Through sequencing, the genetic events leading to resistance can be confirmed. Agents can then be trialed to overcome this resistance and see how they perform against multiple molecular events.

Overall, using highly clinically relevant PDX models and generating resistance models as needed can confirm drug mechanisms of action. By thoroughly understanding these truly translational models, they can be used to corroborate clinical data and understand clinical trial design. Uncovering molecular events behind drug response/resistance can also provide prognostic biomarkers to predict clinical response.

Using Hypothesis-Free Biomarker Discovery to Optimize Clinical Trial Design

Hypothesis-free biomarker discovery is as the name suggests – using a variety of tools in a systematic and empirical pipeline to uncover biomarkers potentially without any knowledge of the drug or mechanism of action being investigated. This approach is also not limited by patient heterogeneity.

The main goals of hypothesis-free biomarker discovery analyses are to:

  • Understand true mutations from variants
  • Determine the functional effects of genetic aberrations
  • Understand deleterious effects at the DNA, RNA, and protein levels
  • Identify the most appropriate indications and target patient populations.

For understanding patient populations, this can help to optimize clinical trial stratification when a drug is already in the clinic by retrospectively analyzing biomarkers.

A key first step in this approach is often to run a mouse clinical trial (MCT). MCTs are population studies - surrogate clinical trials in a preclinical setting, capturing the clinical heterogeneity. They replicate clinical trials using PDX models, with the added advantage of including multiple replicates of the same patient in each arm.

For hypothesis-free biomarker discovery, multiple PDX are screened to generate response data which is correlated with characterization data. Advanced statistical frameworks have already been designed for MCTs to maximize the studies for efficacy evaluation and biomarker discovery.

Through analyzing the MCT data, biomarker panels are identified based on features such as gene expression or mutation. These panels can be compared with current clinical trial enrollment criteria to see if these are optimized or can be adjusted. Overall, this can improve the accuracy of patient stratification and clinical trial enrollment, potentially leading to expanding drug indications or opening trials to larger groups of relevant patients.

Other benefits of MCT/in silico analyses include rescuing and repurposing previously “unsuccessful” investigational agents, and to increase success rates and trial accuracy through in depth, big data analysis.

Conclusion

Early identification of predictive biomarkers during preclinical drug development provides a wealth of benefits, ultimately offering multiple opportunities to de-risk clinical trials.

Optimal platforms for biomarker discovery are established by implementing systems biology approaches, and leveraging a variety of preclinical models combined with robust analytical techniques. This accelerates drug development, and hopefully leads to improved chances of clinical success.


Related Posts