<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

The Beginners Guide to Patient-Derived Xenograft (PDX) Models

HuPrime graphic2-01.jpg

Here’s what you need to know about PDX and what to expect from them in your research.

Most preclinical researchers are aware of patient-derived xenograft models (or PDX), but many are still unsure exactly what to expect from these models.

  • What added value do PDX offer over traditional xenografts?
  • How are PDX different from CDX?
  • When are they most useful in your drug development program?

What are PDX and How are they Different from Cell Line Derived Xenografts?

In drug discovery, animal models are used to understand the efficacy, PD, PK, metabolism, and tolerability of candidate drugs. In oncology, these have traditionally been cell line xenograft (CDX) models using tumor cells immortalized in vitro from patient tissues. These cell lines have been adapted to grow on plastic, used for many generations, and are often greatly altered from original disease.

PDX, on the other hand, are generated by taking patient tumor tissue and directly implanting into a mouse, never growing in vitro. Subject to the implanted tissue “taking” in the host and achieving reasonable growth rates, the tumor tissue is subsequently passaged into further animals (P1, Pn, etc.) and becomes a PDX model. These models are constantly maintained in vivo, with heterogeneous cell types and a tumor microenvironment closely mimicking that of human tumors.

What Advantages do PDX Offer?

PDX provide stable models which more closely recapitulate the characteristics of the parental tumor than traditional xenografts – such as histo- and molecular pathology, driver mutations, and oncogenic changes – offering a more predictive alternative for preclinical drug evaluation.

How Do I Know a PDX Model Truly Reflects the Patient Tumor?

Original PDX models can be QC’d (as well as other, low-level passage numbers) to ensure the original tumor pathology is maintained. Similarly, genetic fingerprinting (STR) of models across passages can be performed.

Using only low passage number models (while banking master samples for further model creation) should ensure the lowest likelihood of genetic drift over time.

What Information Can I Expect with a PDX Model?

PDX come with a wealth of both patient and model information. For the patient, this can include background data such as:

  • Ethnicity
  • Age
  • Smoking Habits
  • Stage and Grade of Disease
  • Biopsy Site
  • Pathology Diagnosis
  • Prior Treatments, if any

PDX model annotation starts with a pathology QC and model fingerprinting. This is then expanded to cover all the genetic data needed to select models and understand response vs disease background – such as gene expression, copy number, mutation, fusion, and microRNA expression. Data is likely to come from a combination of next generation sequencing (e.g. RNA sequencing, whole exome sequencing) as well as microarray data and model hotspot analysis, verified by in vitro assays as needed.

Immunohistochemistry data is also common for certain disease types, e.g. breast cancer, where a model’s ER, PR, and HER2 expression status is important to determine cancer subtype.

The robust growth needed for efficacy studies is usually confirmed by growth curves, which can also show variability in growth for a certain model. These can be combined with any available treatment data to see how the model responds to SoC or experimental agents, if models are treatment resistant, and to explore response variability vs. background.

Certain disease types should also be available with specific information. With blood cancer models such as AML, for example, you could also expect to find patient primary blood test results, primary marrow morphology, and model phenotyping for antigen expression.

How do I Choose a PDX Model?

Do you want a triple negative breast cancer model, a model harboring a specific fusion, or a SoC-resistant model?

The easiest way to find exactly what you are looking for is through an online collated database of models which allows searching of any model parameter. This could be within one indication, or for high gene expression across a range of cancer types.

Tumor microarrays can also be useful if you want to rapidly check a lot of models for expression of a protein target.

When would I add PDX to my Drug Development Program?

PDX are the ideal tools to use when drug development programs are gearing up for clinical trials, as they have been shown to be the most predictive xenograft model available. PDX growth and response to SoC correlate well with patient clinical response, providing highly predictive data for guidance on indication or patient clinical stratification.

Traditional xenografts are still extremely useful for early stage drug development, especially for the initial evaluation of multiple potential candidates or a compound series, or to evaluate and rank efficacy against a known target which a particular cell line may be known to express.

What are PDX Main Uses?

PDX have a wide range of uses based upon their similarity to patient tumors and predictability of response:

  • As individual models to study specific tumor response (based on models harboring specific genetic features you are targeting)
  • In population studies for preclinical drug screening, biomarker analysis (including for clinical trial stratification), and identification of sensitivity/resistance mechanisms.

Can I use PDX for Immuno-Oncology Studies?

Yes, provided you implant in humanized mice. PDX are actually an ideal model for immunotherapy studies as they can capture the characteristics and diversity of the human clinical oncology population. Tumors may also use different mechanisms to interact or interfere with the immune system, which PDX could also recapitulate.

If you have any further questions on PDX models or how to use them, or are interested in learning more, please contact us.


Related Posts