<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Preclinical Consulting Services

Learn more about how our consulting services can help to support your journey to the clinic.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

How to Select the Right In Vivo PDX Using PDX-Derived Organoids (PDXO)

Select the Right In Vivo PDX Using PDX-Derived Organoids (PDXO)Select the right in vivo PDX: Explore how 3D in vitro tumor organoids are used to guide in vivo PDX model selection.

The Transition from In Vitro to In Vivo Oncology Drug Development

At some point during your oncology drug development, you’ll want to move from in vitro studies to in vivo validation. A big choice to make at this point is which in vivo models you’re going to use. Historically, initial in vitro screening would be via panels of cancer cell lines, with transition to the in vivo models of interest as their cell line derived xenograft counterparts.

Now, more predictive patient-derived xenograft (PDX) models are often preferred for in vivo testing, so there’s the question of which are the right models for you and your agent. You could try an initial large scale screen using PDX models, but as in vivo models PDX aren’t really amenable to high-throughput screening (HTS) due to costs and time/labor for generation and maintenance.

The Development of PDX-Derived Organoids

An alternate method for PDX model selection is by using models derived from PDX for in vitro screening, such as PDX-derived organoids (PDXO).

Tumor organoids, including PDXO, are a revolutionary system within oncology drug development, with many applications across library screening and immunotherapy assessment. They are 3D in vitro culture systems developed from stem cells which recapitulate the complexities seen across a range of human cancer tissues. This includes cancer stem cells (CSCs) and their downstream differentiated progeny, as well as capturing all the key phenotypic and genetic features seen in parental tumors.

Tumor organoids are derived either directly from patient tumor tissue (patient-derived organoids or PDO), or as PDXO from PDX which expands PDO collections and their included genotypes/phenotypes.

The Benefits of PDXO including PDX Selection

There are multiple benefits of using PDXO models. Since large PDX panels already exist, PDXOs can be rapidly established and expanded for large-scale drug screens. This combines the benefits of well-characterized and predictive PDX models, with an in vitro platform amenable to HTS.

An added benefit is the availability of the parental PDX. This allows a simple workflow, with drug potency and efficacy tested in vitro on highly patient-relevant PDXO, with follow on in vivo validation studies:

  • Perform a PDXO in vitro screen evaluating a large number of models, effectively performing clinical trials in a dish
  • Use the data to identify subsets of corresponding responders/non-responders
  • Translate to the matched PDX model for validation of response in vivo

This ensures a much more informed and efficient transition from early stage in vitro efficacy testing to late stage in vivo validation studies to confirm efficacy and PK/PD effects. The transition is supported by data showing that PDXO in vitro drug response mirrors the corresponding PDX in vivo response.

The high level of characterization of the PDX models selected also enables further downstream applications in in silico analysis leading to the discovery of biomarkers of response.

Conclusion

Selecting the right in vivo PDX is possible by using PDX-derived organoids, and is one of the many new applications brought to oncology drug discovery from tumor organoid generation. It’s also become possible to reduce and optimize animal usage and accelerate the preclinical drug development workflow. By combining the benefits of in vitro tumor organoids with their in vivo PDX counterparts, a unique matched platform is provided, leading to more successful transition from early in vitro assessments to late-stage in vivo validation studies.


Related Posts