<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Preclinical Consulting Services

Learn more about how our consulting services can help to support your journey to the clinic.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

What are PDX-Derived Organoids (PDXOs)?

What are PDX-Derived Organoids (PDXOs)?
5:51

Learn about PDX-derived organoids, including PDXO establishment and utility in a pioneering drug discovery platform combining the benefits of in vitro PDXO and highly predictive in vivo PDX models.

PDX-Derived Organoid Models

PDX-derived organoids (PDXOs) are 3D in vitro models generated from patient tumor tissue that’s been previously passaged into murine models for expansion. More simply, PDXO are in vitro models derived from in vivo patient-derived xenografts (PDX).

PDXOs are generated using the same protocols as patient-derived organoids (PDO, developed directly from patient tumor tissue). For both models, cancer stem cells (CSCs) are preserved and give rise to cancers found in human patients. PDXO derivation methods include protocols from Hubrecht Organoid Technology which are optimized and adapted for the growth of tumor organoids.

Briefly, PDX tumor cells are cultured in a highly enriched growth medium containing a tailored cocktail of growth factors. This allows the long-term expansion of CSCs and their progeny, with high stability and genomic integrity. This leads to multicellular 3D PDX-derived organoids composed of different cell types reflecting those in the original patient tumor.

Since PDXOs derive from cancer stem cells, they faithfully recapitulate the histopathological properties of the corresponding in vivo PDX tumor (features which are lost in conventional in vitro models). PDXO models also retain key genomic and phenotypic features from the patient’s primary tumor. This results in a robust in vitro 3D model for cancer research and drug discovery.

Why are PDX-Derived Organoid Models Needed?

Traditional oncology drug development strategies are failing. Oncology agents have a higher attrition rate than other therapeutic areas, with drug efficacy rather than safety being the clinical stumbling block.

There’s a clear need for advanced in vitro models with improved predictive power, and to guide more relevant in vivo model selection. Choosing more clinically relevant in vitro and in vivo models as early as possible will accelerate drug development, and make preclinical programs more cost-effective.

Importantly, improved models such as PDX-derived organoids can also help researchers develop a more complete understanding of which patient subgroups will respond to a therapy, and the underlying reasons why.

Developing a platform combining robust in vitro PDXO assays with matched in vivo PDX model response offers a unique preclinical workflow to translate preclinical efficacy findings into clinical success.

The Value of PDXOs in Drug Development

To fully understand the value of PDX-derived organoids in vitro, it’s important to first understand the value of PDX models in vivo.

PDX are the best preclinical in vivo model for predicting clinical outcomes. This is because PDX faithfully recapitulate the genomic and phenotypic complexities observed in cancer tissue. As PDX are derived directly from patient tumor tissue (and never propagated in vitro on plastic), they show high genetic integrity relative to the original patient tumor. Panels of PDX models from a patient population also represent that populations’ tumor heterogeneity.

Large collections of PDX models already exist for many different tumor types, including breast, colorectal, and lung cancer. These models are very well-characterized, with gene expression profiles, in vivo pharmacology, and protein biomarker detection data available. This means that large libraries of PDXOs can be established from available PDXs with relative ease and speed providing the only available in vitro system to display patient relevance.

Developing a large library of annotated and extensively characterized PDXO (similarly to their matched PDX), allows us to take full advantage of the panel as a surrogate for the cancer patient population in high throughput drug screens.

Therefore, in developing in vitro PDXOs with matched in vivo PDX counterparts a pioneering drug discovery platform is created, with the potential to dramatically improve preclinical predictivity.

Benefits of PDXOs

PDX-derived organoids offer significant advantages over standard 3D models such as spheroids. PDXO:

  • Better recapitulate the original disease (histopathology and molecular pathology).
  • Better mimic the original tumor architecture, which is known to influence drug response.
  • Provide higher quality read-outs with lower batch to batch variation and high signal:noise ratio.
  • Provide improved predictivity of tumor response in vivo.

Compared with in vivo models, PDXO are relatively easier and faster to establish. This means that PDXO are better suited to large scale studies (testing multiple agents and combinations) than PDX. This allows in vivo platforms to instead be used for more focused studies, and results in a cost reduction in preclinical screening.

Applications of PDXOs

As discussed above, PDX-derived organoids provide an easily scalable in vitro system for large scale screens to obtain initial drug sensitivity data. Agents can then be moved to a more complex in vivo system, using matched PDX derived from the same tumor tissue and cells as the PDXO. This allows the refinement and validation of your therapeutic strategy, in the first paired and most predictive platform of its kind.

Additionally, all the standard assays and techniques performed on cancer cell lines can also be performed on PDX-derived organoids, providing a versatile in vitro model. With the high level of genomic characterization data available, PDXO also provide a tool for in silico drug discovery.

Discover how our Organoid services can enhance your drug discovery process. Visit our Organoid Service Page to learn more about our capabilities and how we can support your research with cutting-edge technology and expertise.

Learn More


Related Posts