<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Preclinical Consulting Services

Learn more about how our consulting services can help to support your journey to the clinic.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

How to Use Tumor Organoids for Immuno-Oncology Applications

tumor organoids for immuno-oncology applicationsExplore how to use tumor organoids for immuno-oncology applications, including immunotherapy assessment through co-cultures with autologous and non-autologous immune cells.

Challenges in Immunotherapy Drug Development

It’s well known that in vitro testing of cancer immunotherapies is challenging. This is due to I/O agents needing complex and dynamic interactions between the tumor and immune system that are only fully recapitulated in vivo.

However, available in vivo I/O models are also far from perfect. Current immuno-oncology models share common challenges, including:

  • Species specificity: although homograft models feature a competent immune system they can only be used to evaluate cross-reactive or surrogate agents
  • The complexity of humanized systems, which results in high developmental costs and timelines
  • Graft-versus-host disease which limits the experimental window
  • Donor-to-donor variability which can complicate data interpretation
  • Partial or inefficient reconstitution of the immune system, which limits the applicability of I/O models to agents targeting non-reconstituted components

Using Organoid Co-Cultures for I/O Applications

A new platform that may offer hope in using patient-derived models for in vitro immunotherapy assessment is tumor organoids, which are already revolutionizing the assessment of non I/O agents. These innovative patient-derived 3D models provide clinical relevance, population diversity, and patient-response predictivity.

So far, the main challenges in modeling immunotherapy response in vitro have been:

  • The limited availability of patient material to test in co-culture systems
  • The lack of antitumor reactivity of autologous immune cells.

Tumor organoids are helping to overcome these issues. They are used in co-cultures with either autologous or non-autologous immune cells, to provide a patient-relevant in vitro platform for immunotherapy development.

The Benefits of Tumor Organoid and Immune Cell Co-Cultures

The benefit of in vitro tumor organoids for immuno-oncology applications is the enhanced clinical relevance of tumor organoids compared to cancer cell lines. The 3D architecture and spatial arrangement of multiple cell lineages results in the formation of mini-organs that recapitulate the genomic, morphological, and physiological features of the original tumor. This increased relevance helps produce more accurate efficacy and potency data for I/O agents, identify mechanisms of resistance or understand treatment failures, and model population diversity/heterogeneity.

The in vitro nature of organoid co-culture platforms also makes them more scalable than in vivo models, meaning multiple agents and donor/model combinations can be tested at the same time. Another benefit is that healthy organoids are also available or can be developed simultaneously to evaluate any potential off-target effects on human tissues in parallel, which is not possible with in vivo models.

Tumor Organoid and Autologous Immune Cell Co-Cultures

This experimental approach involves combining immune cells and tumor organoids which are developed from the same patient (autologous). This co-culture system was published by Dijkstra et al., who evaluated T cell-specific responses against CRC and NSCLC organoids.

Dijkstra et al report on tumor organoid and autologous immune cell co culture

Strong tumor reactivity was seen after two weeks of tumor organoid co-culture with autologous PBMCs, measured by IFNγ secretion and CD107a upregulation in CD8+ T cells. These responses were confirmed to be tumor specific, as T cell reactivity was not detected in co-cultures with organoids derived from normal colon or lung tissue. Morphological and molecular analyses also indicated that the expanded autologous reactive T cells efficiently killed tumor organoids.

Challenges of Tumor Organoid and Autologous Immune Cell Co-Culture

Autologous PBMC and tumor organoid co-cultures are still highly experimental, at the research stage of development. There are some well-recognized challenges associated with this approach, including:

  • Limited volume of blood from donor cancer patients
  • Lack of tumor-reactive T cells among PBMC from most donor patients
  • Limited scalability for drug development applications

Tumor Organoid and Non-Autologous Immune Cell Co-Cultures

A more feasible approach for immuno-oncology drug development is the use of organoid and non-autologous immune cell co-cultures which overcome some of the challenges discussed above. Non-autologous immune cells are much more readily available from healthy donors. Here, rather than using matched organoid and immune cells, the organoid or immune cells are selected based on different criteria.

  • Organoids are selected based on the gene or protein expression profile of a target of interest or mutational burden
  • Multiple non-autologous immune cells donors can be selected or different immune cells isolated

Tumor organoid and non-autologous immune cell co-culture platforms are used to assess:

  • Tumor organoid killing by allogeneic T cells to evaluate the potency of immunotherapy agents
  • Tumor organoid killing and tumor reactivity of CAR-T and TCR T cells
  • Tumor organoid killing by ADCC (NK) and ADCP (macrophages)

CrownBio tumor organoid and autologous immune cell co culture.

Challenges of Tumor Organoid and Non-Autologous Immune Cell Co-Culture

There are still some challenges associated with co-culturing organoids with non-autologous immune cells. These co-cultures can’t be used to test tumor antigen specificity. Organoid co-culture with non-autologous T cells tests the allogenic T cell response/killing of tumor organoids and measures the potency of immune checkpoint inhibitors. However, in the clinical setting, checkpoint inhibitors are aimed at improving T cell response to specific tumor antigens, instead of eliciting allogenic T cell responses. Further development of the organoid and non-autologous immune cell platform should allow the testing of tumor antigen specific T cell reactivity.

Engineering Tumor Organoids to Develop Unique New Immunotherapy Models

Another distinct advantage of tumor organoids for immuno-oncology applications, relative to in vivo models, is that they can be engineered to establish new immunotherapy models, such as by expressing specific CAR-T targets of choice. These models can also be modified to express luciferase or fluorescence reporters which allow the detection of tumor organoid killing via imaging.

Conclusion

Using tumor organoids for immuno-oncology applications offers researchers an attractive additional preclinical option for modeling the complexities of tumors in vitro for I/O drug development. While tumor organoid and autologous immune cell co-cultures are still in their infancy, new platforms combining tumor organoids and non-autologous immune cells are available for scalable immuno-oncology drug development applications. Using this approach allows better recapitulation of individual patients and produces more clinically relevant results.


Related Posts