<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Preclinical Consulting Services

Learn more about how our consulting services can help to support your journey to the clinic.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

How to Quantify Drug Efficacy and Effects in Mouse Clinical Trials

how to quantify drug efficacy and effects by LMM in mouse clinical trialsLearn how to correctly quantify drug efficacy and effects in mouse clinical trials using a linear mixed models statistical framework.

Using Linear Mixed Models to Optimize Mouse Clinical Trials

Mouse clinical trials (MCTs) represent a new approach to preclinical efficacy studies in oncology, more closely recapitulating the clinical set up. Panels of PDX models are used to identify responder and non-responder populations, to more accurately predict who’ll benefit most in the clinic.

We’ve previously written about the analysis of MCTs, and how this needs to be enhanced – to move beyond the endpoint-based approaches which mimic clinical trial analysis. These approaches don’t take advantage of the wealth of data generated by these clustered longitudinal studies.

A new linear mixed models (LMMs) approach has been devised which can model and describe heterogeneity in growth and drug response data from MCTs, and which is applied to answer fundamental MCT questions on study design and analysis.

Our previous post in this series looked at using LMM to guide study design, and this post reviews how LMM are used to correctly quantify drug efficacy and effects within a MCT.

Quantifying Efficacy Across Indications and Drugs

When you start analyzing MCTs, common questions include how to correctly quantify differences in efficacy across various tumor indications and between different anticancer agents.

The answer is to apply a LMM statistical framework to the data, and then readout a variety of parameters to correctly identify trends. Imagine you start with an MCT dataset where one drug has been tested across a variety of cancer indications.

To start the analysis, first your tumor growth curves are converted to log scale, to show linearity. This data can then be fitted to a LMM with a variety of parameters comparing tumor growth for the different indications following treatment with vehicle or your drug.

Parameter values can then be compared. For instance, tumor growth of cancer A under vehicle is compared with tumor growth of cancer B under vehicle. Looking at the p value for this comparison will show you if you have no differences (meaning tumor growth is similar), or showing a significant p value (meaning one cancer is growing more rapidly than the other).

Similar analyses can then be performed for treatments – looking at treatment effect for each cancer (with p values revealing efficacy or no efficacy) and then comparing cancers. The resulting p values will highlight if there is any difference between agent treatment effect for each cancer type.

If your MCT includes different agents, single or combination regimens, then similar analyses can be performed to give you definitive results on the treatment effects of the various agents/regimens on the cancer type(s) being studied.

Evaluating Drug Effects Beyond Conventional Survival Analyses

Another use for LMMs in MCT analysis is to correctly evaluate drug effects, by moving beyond conventional survival analyses. In the clinic, Kaplan-Meier survival analysis is performed as patient survival is independent from each other. Model survival in MCTs is however not independent, which means Kaplan-Meier or the Cox proportional hazards model is not appropriate.

Instead, an additive frailty model (an extension of the Cox proportional hazards model) can be used to correctly evaluate drug effect in MCTs. The additive frailty model has two frailty terms, which quantify both the PDX growth rate and drug response heterogeneity. This means that this analysis more fully models the heterogeneity of hazard and drug efficacy within the clustered population structure of MCTs. PDX heterogeneity can be severely misestimated when using other models.

Resulting overall survival data and hazard ratios are more accurate, providing a superior model over conventional survival analyses.

Conclusion

To quantify drug efficacy and effects in mouse clinical trials, as well as maximize mouse clinical trial data, it’s important to perform the right analyses leading to the most informed conclusions. Linear mixed model approaches allow the correct quantification of drug efficacy across cancer indications and different agents. An additive frailty model provides accurate drug effect data, to optimize overall survival and hazard ratio results.


Related Posts