<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Preclinical Consulting Services

Learn more about how our consulting services can help to support your journey to the clinic.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

Tumor Heterogeneity in Preclinical Oncology Models

example graphic showing patient intratumor and intertumor heterogeneityReal tumors are complex and heterogeneous, which has long frustrated efforts to recapitulate the disease in a controlled setting. What causes tumor heterogeneity, and can it be effectively reproduced in preclinical oncology models?

Tumor Heterogeneity

It was back in the 1970s when tumor progression was first proposed to be an evolutionary process, later determined to be under continuous Darwinian selection.

Generally, tumors are detected after undergoing many rounds of cell division, during which they acquire random, novel somatic mutations. The driver events (a minority subset) may provide the evolutionary advantage which allows cancer cells to grow better than others.

Cancers frequently display substantial intra-tumor heterogeneity in virtually all distinguishable phenotypic features such as metabolism, immunogenicity, and metastasis. The nature of this tumor heterogeneity can have profound implications both for tumor development and therapeutic outcomes.

What Causes Tumor Heterogeneity?

The most common view on the origin of tumor heterogeneity is that it arises from cancer stem cells. These cells have the ability to self-renew and evolve different phenotypic cell populations with strong tumorigenicity.

Intra-tumor heterogeneity is thought to de derived from a number of factors, including genome, transcriptome, proteome, and stromal heterogeneity. This results in tumors which show different levels of sensitivity or resistance to treatment.

Recently, a variety of new technologies helped assess the clonal content of tumors. This includes multi-regional and single cell next generation sequencing, as well as research autopsies.

Changes in clonal content over time, and during treatment, can now be easily tracked. This provides novel insights into cancer evolution and the mechanisms underlying treatment resistance.

Tumor Heterogeneity in Cell Lines and Traditional Xenografts

Preclinical cancer models play a crucial role in oncology drug discovery. Over the years, “traditional” cell line derived xenograft models have played a key part in the process.

Collections such as the NCI-60 cancer cell line panel have been used for anticancer drug screening for over 25 years. The panel has significant limitations, however, such as a lack of prognosis in drug efficacy studies. Despite being a tremendous step forward in drug discovery research, these models still fail to mimic the enormous complexity of human cancers, including tumor heterogeneity and tissue architecture.

Moreover, it’s not accurately known how conventional xenograft models differ from their source tissue genomically, transcriptomically, and proteomically. Traditional xenografts also lack clinical information such as therapeutic response, stage of disease, treatments administered, etc.

More Clinically Relevant Tumor Heterogeneity in PDX Models

The need for improved models lead to the discovery of patient-derived xenografts (PDX). These models are generated by directly engrafting fresh human tumor tissue into immunodeficient mice.

PDX models mostly retain the principal histological and genetic characteristics of their donor tumor. These models have been shown to be predictive of clinical outcomes and are being used for preclinical drug evaluation, biomarker identification, biological studies, and personalized medicine strategies.

The demand for these models has grown exponentially in recent years as they closely mimic patient tumors with regard to tumor microenvironment and heterogeneity. PDX also exhibit a high degree of genomic stability compared to the parental tumors.

Conclusion

In conclusion, PDX models continue to be a preferred model in biomarker development, drug discovery, and evaluation. They capture more of the inter-patient heterogeneity seen across patients, providing a more patient-relevant preclinical model.

How to Optimize Mouse Clinical Trials (MCTs) Through Statistical Endpoints and Study Design


Related Posts