<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Preclinical Consulting Services

Learn more about how our consulting services can help to support your journey to the clinic.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

Study Finds Perfect Therapeutic Match To Fight a Common Form of Leukemia

Acute lymphoblastic leukemia (ALL) is the most common type of childhood cancer, characterized by an excessive production of immature white blood cells (lymphoblasts) by the bone marrow. Although most children survive ALL, many suffer late or long-term side effects from treatment, including heart problems, growth and development delays, secondary cancers, and infertility. Now researchers at UC Davis and Ionis Pharmaceuticals have developed a new treatment that has the potential to reduce toxicity and secondary effects – an antibody/DNA molecule hybrid that specifically targets ALL cells.

ALL is an acute form of blood cancer, characterized by the overproduction of immature lymphoblasts which multiply and spread to other organs, wasting the resources of the bone marrow that are normally used to produce functioning white and red blood cells. ALL is most common among children aged 2-5 or among the elderly, with around 6,000 new cases and 1,430 deaths from the disease reported every year in the US alone.

Chemotherapy is generally the initial treatment choice, while patients with more advanced disease are often given steroids, radiation therapy, and more intensive treatments, including bone marrow or stem cell transplants.

Treatment is most effective when ALL is diagnosed early. About 80 to 90% of children have a durable complete response following treatment, however long-term side effects of chemotherapy are often reported, highlighting the need for less toxic treatment options.

Can DNA Therapy Reduce Treatment Toxicity?

Antisense oligonucleotides are single strand DNA molecules that can bind to messenger RNA, preventing it from making a protein. Although this technology has a clear therapeutic potential, getting the genetic material inside target cells is still a challenge.

A new study, published in Molecular Medicine has shown for the first time, that a conjugate molecule made up of an antibody and an antisense oligonucleotide can effectively be used as a therapeutic agent for ALL.

In the study, MXD3 was selected as the biological target, as this protein is known to help cancer cells to survive. To silence MXD3, antisense DNA that inhibits the protein was attached to an antibody that binds to CD22, a receptor expressed almost exclusively on ALL cells.

Once the antibody bound to CD22, the leukemia cells internalized the conjugate molecule. Once inside the cell, the antisense DNA molecule prevented MXD3 production therefore triggering cancer cell death.

The efficacy of the hybrid treatment was tested against ALL cell lines in vitro and on primary (patient-derived) ALL cells in a xenograft mouse model. Animals that received the hybrid therapy survived significantly longer than those in the control group.

The treatment was also shown to be selective, exclusively targeting cells that expressed CD22. While healthy B cells were attacked along with leukemia cells, they should be replenished following treatment, with the therapy supposedly leaving blood stem cells and other tissues unharmed.

While the study shows the conjugate is effective in treating animal models of ALL, researchers still need to understand the exact role of MXD3 in the tumorigenic process. Moreover, whether this treatment can be combined with other therapies or can be used against other cancers remain open questions.

To interrogate biological agents and new therapies for ALL predictive preclinical models that present stable disease are needed. Most commercially available models are transient, non-transferable through passages (not renewable), and without disease symptoms and mortality. While they can provide a gross measure of response, they have a finite banked leukemia source from patients.

CrownBio offers a commercially unique collection of patient-derived blood cancer models (HuKemia), that are validated, stable models with typical disease symptoms and eventual mortality, and that are truly representative of the human condition. Our HuKemia collection includes 19 ALL models, which are well characterized and annotated with expression profiling (U219) and gene copy number data (SNP6). Our ALL collection is also complemented by 6 AML patient-derived HuKemia models, featuring patient relevant mutations.

CrownBio’s permanent HuKemia models allow clients to test the efficacy of novel agents and follow disease recurrence after initial treatment targeting drug resistance. To learn more about our HuKemia models and services contact us today at busdev@crownbio.com


Related Posts