<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Preclinical Consulting Services

Learn more about how our consulting services can help to support your journey to the clinic.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

Targeting KRAS: Finally Drugging the Undruggable?

targeting KRAS and KRAS G12C mutations in oncology drug developmentTargeting KRAS - As promising clinical trial data emerges for KRAS G12C inhibitors, we review the background, recent achievements, and potential future approaches to drugging the once “undruggable” KRAS target.

KRAS: An Oncogenic Driver in Multiple Cancer Types

One of the most frequently mutated oncogenes in human cancer is KRAS, which acts as a driver for multiple cancer types. KRAS mutation occurs in around 25% percent of all human cancers, and plays an important role in the emergence of some of the most common and deadly carcinomas including more than 90% of pancreatic and lung cancers.

The most common KRAS gene mutations occur at codons 12, 13, or 61, which affect the intrinsic GTPase activity of the KRAS protein:

  • Mutation of glycine 12 (G12) results in RAS activation by interfering with GAP binding and GAP-stimulated GTP hydrolysis.
  • Mutations at residue 13 sterically interfere with the arginine, decreasing GAP binding and hydrolysis.
  • Glutamine 61 has a direct catalysis role, and mutations here trigger a series of reactions finally resulting in an accumulation of active GTP-bound RAS.

Targeting KRAS in Cancer Therapy

The research community has put tremendous effort into developing drugs to target KRAS mutations but, until recently, there’s not been much success leading to KRAS being deemed “undruggable”. Alternative approaches have instead developed inhibitors or targeted agents affecting the signaling cascades downstream of RAS, such as MAPK and PI3K pathways.

BRAF inhibitors (vemurafenib and dabrafenib) and dual specificity MEK1/MEK2 inhibitors (trametinib and combimetinib) have been approved as single agents or in combination for the treatment of BRAF-mutated melanoma. Immense efforts have also been invested in developing ERK1/2 kinase inhibitors, which is exclusively downstream of MEK. Downstream inhibitors of transcription factors such as Fos-like antigen I (FOSL1) are also effective in KRAS mutant lung and pancreatic cancer.

Direct Targeting of KRAS G12C Mutations

KRAS G12C accounts for over 40% of all KRAS mutations, and has therefore been a key target for cancer drug developers. G12C is a single point mutation, substituting glycine to cysteine, and is highly dominant in lung cancer, causing about 12% to 13% of lung adenocarcinomas.

Researchers have tried targeting KRAS G12C with small molecules, but historically non were selective, binding both mutated and wild-type KRAS. Recent advances show that small molecules that form covalent bonds with the mutant cysteine show a specific selectivity for the mutant KRAS protein over wild type.

Researchers are also now targeting an adjacent histidine 95 (H95) residue, which may help drug-protein interactions. It’s been hypothesized that covalent inhibitors may lock the KRAS G12C in the inactive state, therefore blocking activated oncogenic signaling.

Clinical Advances in Targeting KRAS G12C Mutations

Amgen AMG 510

Recent promising advances in targeting KRAS G12C have increased hope in a clinical agent being approved soon, with multiple agents now in clinical trials including key players from Amgen and Mirati.

Amgen are trialing AMG 510, which is the first KRAS G12C inhibitor to reach clinical trial for patients with advanced cancer featuring the mutation. Early results showed that in non-small cell lung cancer (NSCLC), disease could be controlled in 90% of patients (although this was only for a small cohort of 10 patients). Five patients saw tumors shrink after AMG 510 treatment, and another 4 had tumor growth stopped.

Follow up data looked at 34 NSCLC patients, of which 23 were evaluable for efficacy, and 13 received Amgen’s Phase 2 target dose of AMG 510. Of these 13 patients, 7 achieved partial response and 6 had stable disease, meaning 100% disease control.

Amgen are currently enrolling for a potentially registrational Phase 2 study for this agent, which also received FDA fast track designation in September last year for metastatic KRAS G12C+ NSCLC patients who’ve received prior treatments. A companion diagnostic is also under concurrent development to help select the correct patients with KRAS G12C mutation for AMG 510 treatment.

Interestingly in preclinical studies, AMG 510 stimulated T cells to attack tumors. When the drug was combined with an anti-PD-1 inhibitor in immunocompetent murine models, there was significant inhibition of tumor growth, suggesting potential combination regimens in the clinic.

Mirati Therapeutics MRTX849

The other current major player is Mirati Therapeutics, with MRTX849. At last year’s AACR-NCI-EORTC conference, Mirati presented the first data from their Phase 1/2 trial in patients with advanced solid tumors that have a KRAS G12C mutation. At that point the trial had enrolled 17 patients, and was still investigating maximum tolerated dose. NSCLC and CRC patients receiving the highest dose of MRTX849 given, all showed either partial response or stable disease. Across all dose levels, 3 of 6 NSCLC patients, and also in 1 of 4 CRC patients partially responded.

This trial is currently ongoing, with an estimated completion date of April this year.

Further KRAS G12C Inhibitors

Other players in the field include Boehringer Ingelheim, who advanced their pan-KRAS drug (BI 1701963) into clinical testing late last year. BI hope to treat around 15% of all metastatic cancers with this drug. BI also plan to combine BI1701963 with the Novartis MEK inhibitor Mekinist (trametinib) in Phase 1 trials. Their preclinical data show that BI1701963 can stop tumor growth beyond G12C mutations, acting on other KRAS G12 mutations as well as G13.

Wellspring Biosciences have also had their IND application for ARS-3248 accepted, clearing the way for a Phase 1 dose escalation and dose expansion clinical trial run by Janssen.

Future Challenges and Directions in Targeting KRAS

While recent clinical data looks promising in this arena, acquired resistance to KRAS inhibitors is already being expected due to the selectivity of these drugs. There is the potential to combine this class of KRAS inhibitors with other drugs, such as immunotherapies or other targeted agents.

As discussed above anti-PD-1 inhibitors have already been combined with KRAS G12C inhibitors, and pembrolizumab has been tested in combination with trametinib, a MEK inhibitor in KRAS mutant NSCLC.

Interestingly, using immunotherapies in KRAS mutant cancer came up from a multiple dimensional analysis of lung adenocarcinoma patients with co-mutated TP53/KRAS. Using genomic, transcriptomic, proteomic, and clinical data increased expression of PD-L1 and PD-L1+/CD8+ in these patients was shown. Furthermore, TP53 or KRAS mutant patients showed remarkable clinical benefits when treated with anti-PD-1 inhibitors. These benefits were more pronounced in those patients with double TP53/KRAS mutations.

Conclusions

Approved agents directly targeting KRAS would bring clinical benefit to a range of cancer patients. We’re closely watching the current clinical trials, hopeful that this once undruggable target will finally meet its match.


Related Posts