<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Preclinical Consulting Services

Learn more about how our consulting services can help to support your journey to the clinic.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

AACR19 Analysis: PDX and PDX-Derived Organoid Models

AACR19 Analysis: PDX and PDX-Derived Organoid Models

AACR19 Analysis: PDX and PDX-Derived Organoid ModelsReview all the new data on patient-derived xenograft (PDX) models we’re presenting at AACR 2019 this week, including cancer types where there are limited preclinical models such as prostate cancer and sarcoma, novel platforms such as PDX-derived cancer organoids, and using PDX for predictive biomarker discovery.

PDX models provide clinically relevant preclinical tools, as they are derived directly from a patient tumor into a mouse without the need to adapt and grow in vitro first. This results in the retention of patient heterogeneity, histopathology, and molecular pathology, and provides highly translational models across a range of cancer types.

Establishment of a Panel of Prostate Patient-Derived Xenograft (PDX) Models and Evaluation of Anti-Androgen Therapy (AACR 2019, Poster 1060)

Prostate cancer PDX provide new predictive preclinical models, more closely recapitulating original patient tumors and disease, to help in the development of improved prostate cancer therapeutics. We’ve presented on our panel of models previously, developed from castrate resistant and hormone responsive patients; you can watch our dedicated webinar on prostate cancer PDX here.

Poster 1060 recaps the key validation data on our four prostate cancer PDX models, treatment data on two CRPC models, and introduces new SoC data for model PR6513, developed from a hormone responsive patient.

Prostate Cancer PDX Model Characterization and Treatment Data

We’ve characterized our models to show that they retain the structure of the original patient samples. The CRPC models also maintain androgen receptor expression, have high KLK3 (PSA, confirmed by RNAseq) expression, and one model has a TMPRSS-ERG fusion. These data confirm our models as being clinically relevant, capturing clinical disease features.

The poster also presents treatment data for a range of PDX models. The CRPC models show varied response or resistance to docetaxel, and no response to anti-androgen therapies abiraterone and enzalutamide.

The new treatment data focuses on model PR6513, with all primary prostate tissue and patient information for this model included within the poster.

Overall, this panel of unique and clinically relevant prostate cancer PDX models provides new tools for preclinical drug evaluation, to help with prostate cancer research and drug development.

Establishment of Sarcoma PDX Models with Various Subtypes for Drug Efficacy Evaluation (AACR 2019, Poster 4609)

The next panel of PDX models we’ve developed are for sarcoma research. Sarcoma has a variety of subtypes including bone sarcoma (e.g. osteosarcoma, Ewing’s sarcoma, and chondrosarcoma), soft tissue sarcoma, and synovial sarcomas. To develop new agents to treat each subtype preclinical models are needed which effectively capture each subtype clinical features.

This poster details our large panel of models developed, including clinical information for the models, and pathology images across disease subtypes including:

  • Osteosarcoma
  • Ewing’s sarcoma
  • Chondrosarcoma
  • Synovial sarcoma
  • Spindle cell sarcoma
  • Other sarcomas including soft tissue sarcoma, liposarcoma, mesenchymoma, leiomyosarcoma. hemangiosarcoma

Sarcoma PDX Matched Primary and Metastatic Tumors

Another important factor in preclinical research is the availability of models from different disease stages – to model and attempt to overcome both primary and metastatic disease. Our sarcoma collection contains models derived from both primary tumors (derived from the original tumor site), and the matched metastatic tumor.

Matched osteosarcoma treatment data is shown for a primary tumor, lung metastatic tumor, and recurrent tumor after targeted treatment showing varying treatment response to tyrosine kinase inhibitors such as apatanib and anlotinib.

Our large sarcoma PDX panel of different cancer subtypes and stages provides a valuable preclinical platform for evaluating different pathogenesis, as well as investigating future therapies for sarcoma.

Establishment and Characterization of 3D Cancer Organoids as Clinically Relevant Ex Vivo Drug Screening Tools for Cancer Translational Research and Drug Discovery (AACR 2019, Poster 1925)

As well as developing PDX, we’re also using our models to generate PDX-derived cancer organoid (PDXO) models for scalable and high throughput drug screening. Patient-derived organoids (PDO) are already a proven innovative preclinical model system. They are a comprehensive 3D spheroid culture, harbouring cancer multicellular components, and mimicking cancer lesion structures and tumor heterogeneity.

With our large PDX collection covering a wide variety of clinically relevant cancer types and subtypes, we have the opportunity to develop a unique range of PDXO models for drug screening and research. Poster 1925 details our first PDXO development phase, with the models stably passaged from colorectal, lung, gastric, and head and neck PDX primary tumors.

PDXO Development, Characterization, and Validation

Our newly developed models are undergoing stringent characterization and validation. We’ve confirmed that the PDXO models have the same histopathology structures as their corresponding PDX models, and that the PDXO morphology remains the same across early and late passages. We’ve also performed RNAseq analysis, showing that mRNA expression correlation and mutation concordance is high for the PDXO and matched PDX models tested.

Finally, we’ve looked at treatment data across the PDX and PDXO models. Preliminary SoC cytotoxicity data shows that over 70% of the PDXO ex vivo drug sensitivity IC50 datasets correlate with in vivo PDX drug sensitivity TGI data.

Overall, our PDXO models (stably passaged from PDX primary tumors) resemble original PDX tumors histopathologically and genomically and have encouraging predictive values for SoC drug response.

Prognostic Impact of KRAS Driver Mutations and GSTT1 Expression in Colorectal Cancer to FOLFOX Treatment (AACR 2019, Poster 4610)

Our final PDX poster looks at a preclinical use for PDX models – predictive biomarker discovery in colorectal cancer (CRC).

FOLFOX combination chemotherapy is one of the most common and standard first-line chemotherapies used for adjuvant and/or neoadjuvant treatment of CRC patients. However, chemotherapy alone can’t completely eradicate all cancer cells (especially metastatic cells). Mutations in oncogenes such as KRAS may affect patient response, although so far there’s no hard evidence on the association of KRAS or other oncogenic drivers with resistance to FOLFOX.

We set out to use PDX models to identify predictive biomarkers for FOLFOX treatment of CRC, particularly late stage disease. We correlated CRC PDX response to FOLFOX treatment with model genomic background, to hopefully identify genes with significant correlation to response or resistance.

KRAS Mutations and GSTT1 Expression Linked to FOLFOX Response in CRC

We’ve developed a large panel of CRC PDX models and for this study selected 16 PDX derived from Stage II or later patients. First, all models were treated with FOLFOX, with 6 models being sensitive and 10 showing poor response.

The models all underwent biomarker and driver mutation analysis which showed that high expression of GSTT1 and wild type KRAS are correlated with FOLFOX sensitivity. Interestingly, this is consistent with clinical data. 32 CRC patients were treated with FOLFOX, and sensitivity was again correlated with wild type KRAS and high expression of GSTT1.

This confirms PDX as useful tools for deriving clinically relevant biomarkers, and the biomarkers discovered here could be beneficial for clinicians in choosing effective therapies for advanced CRC patients.

Read More on AACR 2019

Keep up to date with all our AACR19 posters, read our new posts on humanized and syngeneic models, and the novel technologies and assays we’re presenting this week.


Related Posts