<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Preclinical Consulting Services

Learn more about how our consulting services can help to support your journey to the clinic.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

Can We Conquer Drug Resistance in Lung Cancer?

At the beginning of the last century lung cancer was a rare disease. However, as early as the end of the 1900s, it had already become the leading cause of preventable death worldwide. In 2016, the disease is expected to cause approximately 158,000 deaths in the United States alone, more than colorectal, breast, and prostate cancers combined. Therefore, finding a better cure for this deadly disease is a pressing need.

Lung cancer has poor prognosis, as it often stays asymptomatic until it is well advanced. Tobacco smoking is responsible for approximately 90% of lung cancer cases, contributing to lung cancer surpassing heart disease as the leading cause of smoking-related mortality. Exposure to other types of carcinogens, such as asbestos, radon, or to a particularly polluted atmosphere, have all been implicated in disease development among non-smokers.

85% of all lung cancer cases are of the non-small cell subtype (NSCLC). Advanced molecular techniques have identified genetic susceptibility in NSCLC linked to amplification of oncogenes and inactivation of tumor suppressor genes. The most important genetic abnormalities detected are mutations involving the ras family of oncogenes.

The Genetic Basis of Drug Resistance

More than a third of NSCLC cases among the Asian population, where tobacco smoking is on the rise, present mutation in the epidermal growth factor receptor (EGFR) gene, which has become a popular target for the development of new anticancer agents. These mutations (deletions in exon 19, and exon 21 L858R mutation) generally arise within the tyrosine kinase domain of the receptor contributing to the expression of a constitutively active form of the protein, which leads to aberrant cell multiplication.

The first generation of inhibitors against the EGFR kinase activity (EGFR-TKIs), such as gefitinib and erlotinib, have been effectively utilized as first-line treatment of advanced NSCLC harboring activating EGFR mutations. However, in these patients drug resistance eventually arise, in most cases as a result of secondary mutations emerging in EGFR (EGFR T790 M, also known as “gatekeeper” mutation). Second and third generation EGFR-TKIs, such as afatinib or osimertinib, were designed to overcome resistance and more potently inhibit EGFR activity. Third generation TKIs are also capable of crossing the blood-brain barrier, and are therefore more likely to have activity in brain metastases, which sometimes develop within a year of treatment.

Given the difficult clinical path of lung cancer treatment which takes patients through disheartening relapse before the more advanced EGFR inhibitors can be prescribed, it has recently been suggested that the third generation EGFR-TKIs should become first-line treatment for EGFR mutated NSCLC.

A New Hope for Treatment Resistant Patients?

It is worth noting that for a subpopulation of NSCLC patients carrying non-canonical mutations in EGFR (exon 20 insertions), there is still no convincing therapy approach since they seem to be refractory to EGFR-TKIs. For these patients combination strategies that hit multiple pathways at the same time have been proposed and novel TKIs are currently being investigated.

To address the need of finding new treatments for this subpopulation of patients, researchers at CrownBio have developed a unique set of patient-derived models (patient-derived xenograft, PDX) that specifically carry non canonical EGFR mutations and that have been trialed with a range of EGFR inhibitors – including first, second, and third generation TKIs as well as Erbitux® (cetuximab), an anti-EGFR antibody that binds to the receptor to inhibits its activity.

Similarly to patients in the clinic these newly developed models showed poor response to standard of care TKIs. More importantly this study was the first one to report a poor outcome following cetuximab treatment in this class of NSCLC, suggesting that CrownBio’s newly developed models represents invaluable assets to predict a patient’s response and for preclinical investigation of drug efficacy before new agents enter the clinic.

CrownBio’s NSCLC models have already been successfully utilized in preclinical research to validate the antitumor efficacy of novel compounds or novel combination strategies.

For more information on CrownBio’s comprehensive collection of NSCLC PDX models visit HuBase, our curated, online, searchable database of phenotypic and genotypic data, patient information, growth curves, and standard of care treatment for our HuPrime® PDX models. Alternatively email us today for a copy of our Models of Resistance Application Note.


Related Posts