<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Preclinical Consulting Services

Learn more about how our consulting services can help to support your journey to the clinic.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

Mystery Solved: Chemotherapy and Immunotherapy Partners in Crime to Kill Advanced Cancer

Cancer cells have the ability to evade the immune system by exploiting a self-regulatory mechanism that immune cells use to avoid attacking healthy cells. Luckily we now understand how to therapeutically reverse this immune escape, and researchers have developed innovative antibodies that target the inhibitors present on the tumor surface (e.g. anti-PD-1/PD-L1 or anti-CTLA-4). A new study in preclinical models has recently demonstrated that the conventional chemotherapeutic cyclophosphamide can be efficacious as an anticancer agent if used in combination with immunostimulatory Toll-like receptor agonists.

Immune cells are the army that keep our bodies clear from foreign pathogens or terminally damaged cells. Normal, healthy cells are spared by the immune system thanks to the presence of specific molecules such as PD-L1, B7-1, B7-2, etc on their surface that prevent the immune cells from becoming activated.

Bacteria, virus-infected cells, or cancer cells on the other hand are detected as foreign bodies and destroyed. Cancer cells, however, have evolved to evade this control by expressing on their surface the same inhibitory molecules as normal, healthy cells, stopping the immune cells from killing them. This cancer-dependent immunosuppression can be reversed with the use of therapeutic antibodies. The antibodies counteract the immunosuppressive activity of molecules like PD-L1, B7-1, or B7-2 on the tumor by preventing them from binding to their natural partners on the surface of the immune cells.

Additionally, specific populations of immune cells (i.e. myeloid-derived suppressor cells – MDSCs, or regulatory T-cells – Treg) are responsible for tuning down the effector killer cells (Teff) to avoid collateral damage in normal surrounding tissues, acting as sentinels against an uncontrolled activation of the immune system.

How does Chemotherapy Work in Treating Cancer?

Chemotherapy is a term used to refer to a large class of agents that non specifically kill dividing cells, such as tumor cells, based on their ability to induce DNA damage. Because of the lack of specificity during this process, most chemotherapeutic agents also damage other healthy cells in the body, like cells in the hair follicles or some immune cell precursors that, contrary to the majority of cells in an adult organisms, still retain the ability to replicate.

Cyclophosphamide, for example is a commonly used chemotherapeutic, which was shown to deplete patients of MDSCs and Treg, thus potentiating the antitumor response by the Teff.

In a new study published in Oncotarget a Mayo Clinic research group set out to find whether they could come up with a combination treatment strategy to further potentiate the antitumor effect of cyclophosphamide.

Using preclinical models of breast, prostate, and colorectal cancer (the syngeneic 4T-1, Panc02, and CT26 models), the group found that co-administering an agent able to emulate a life-threatening bacterial infection potentiates the efficacy of cyclophosphamide.

This bacteria-like agent awakens the immune system of tumor bearing animals by activating the Toll-like receptor (TLR) pathway which, when combined with cyclophosphamide immunoregulatory properties, results in a well-tolerated therapeutic synergy that permanently eradicates advanced tumors.

These results further demonstrate that fighting cancer by taking advantage of a patient’s own immune system could represent a valuable approach to cancer treatment.

To help drive forward immunotherapy research, develop new treatment strategies, and recapitulate clinical treatments, experimental immunotherapy models are needed. The Mayo Clinic study used syngeneic models, which are allografts derived from immortalized mouse cancer cell lines in a recipient host with a fully competent immune system.

CrownBio has validated a range of syngeneic models that we have extensively profiled for in vivo response to a variety of immunotherapeutics, providing clients with the information necessary to select models and the correct doses for combination strategies. We have also generated detailed expression maps and mutational profiles of syngenic tumors before treatment that may be useful for combination studies of targeted agents and immunotherapy or to identify biomarkers that predict response to different immunotherapies.

To evaluate pharmacodynamic effects or efficacy of immunotherapeutic agents across multiple cancer types, CrownBio has recently launched MuScreen™, a large-scale, staggered, in vivo screening of syngeneic models that provides a cost effective approach to fast track strategies.

Contact us today to learn more about our collection of syngeneic model or to enroll your compounds into MuScreen.


Related Posts