<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Preclinical Consulting Services

Learn more about how our consulting services can help to support your journey to the clinic.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

Pairing 3D Organoids with High-Content Imaging Can Develop Clear Views of Complex Cellular Systems

Pairing 3D Organoids with High-Content Imaging

This post explores the benefits of combining high-content imaging (HCI) and high-content analysis (HCA) with 3D in vitro tumor organoids for drug discovery and validation studies. An increasing number of large in vitro screening studies are showing that novel clinically relevant biomarkers of drug response and important drug effects can be discovered by probing a wider array of cellular parameters combined with dose–response assessments.

Why Use 3D In Vitro Tumor Organoids?

As described in a previous post, tumor organoids are highly clinically relevant 3D in vitro models available for drug discovery and validation studies. Hubrecht Organoid Technology (HUB) established robust and reliable protocols which generate tumor organoids that faithfully recapitulate original tissue physiology.

Compared to other advanced culture systems, 3D in vitro organoids are more robust and show enhanced reproducibility because they are very stable genetically and phenotypically. In addition, they have consistent growth kinetics and performance across several passages, with scalable material available for repeat studies.

In vitro 3D organoids are now more accessible due to the availability of large biobanks of well-characterized models. Such biobanks allow researchers to bring clinical trials into the lab using high-throughput platforms for screening new drugs and different drug strategies (e.g., multiple dose ratios, combination effects).

When compared to using in vivo models, tumor organoid matrix screens are highly practical for testing additive, synergistic, or antagonistic effects of combination therapies given the many possible combinations that need to be tested. Tumor organoids are value models when it comes to quantifying the efficacy and potency of oncology agents since they are readily scalable, and they are adaptable to standard in vitro assays such as IC50 measurements and CTG readouts for cell viability. Furthermore, tumor organoids are amenable to co-culturing with immune cells for early immuno-oncology efficacy drug evaluation.

Overall, tumor organoids provide a fast and cost-effective model for applications such as in vitro drug screens and demonstrate high predictivity for patient drug response. These beneficial features enable researchers to make better decisions earlier in drug discovery and increase confidence that selected drug candidates will have better translatability.

Combining Tumor Organoids with Image-Based Phenotypic Analysis

To recap from a previous post, HCI generally describes automated image-based high-throughput technology, while HCA indicates multiparameter algorithms applied to HCI data. In recent years, great technological advances have led to tools that can simultaneously assess many molecular parameters of individual cells (using fluorescent dyes), including cellular and nuclear morphology, receptor internalization, cell viability, cell cycle status, and protein aggregation.

By integrating these clinically relevant 3D in vitro tumor organoids with innovative HCA, researchers can now develop extremely detailed cellular physiology profiles in the context of complex cellular systems (including multicellular structures from spheroids, organoids, and co-cultures, as well as microenvironments). The ultimate goal of pairing these technologies is to deliver highly predictive and translatable preclinical data to define their effect on tumor organoid growth and development.

To highlight an example, patient-derived ovarian tumor organoids can be screened with a library containing thousands of compounds to define their effect on tumor organoid growth and development (Figure 1). Phase 1 would entail optimizing the experimental setup using two different ovarian tumor organoid models. This would be followed by Phase 2 where the compound library would be screened on 1-5 tumor organoid models. Phase 3, which is optional, could involve the knockdown of a gene of interest (using lentivirus for example), and this would then be followed by Phase 4 which is the identification and validation of lead compounds.

Tumor Organoid Models Chart
Figure 1: Thousands of compounds can be screened for lead selection using highly predictive 3D in vitro tumor organoid models.

Rich Quantitative Data for Evaluating Drug Responses

By combining a HCI screening platform with 3D in vitro organoids, researchers can measure basic parameters (such as the number, shape, and size of organoids and nuclei) and more intricate parameters (such as network formation, protrusions, lumen formation, and planar polarity). Together, these measurements can provide unique characterization of treatment effects on organoids with specific mutations and diverse genetic backgrounds. Such readout capabilities rely on advanced technologies that encompass automated liquid handling and fully integrated robotic screening platforms (e.g., Apricot S3, CyBio Felix, and Tecan Fluent), coupled with detection systems (e.g., Tecan Infinite 200 Pro, Molecular Devices SpectraMax iD3, Luminex Guava FACS), and fully automated imaging systems (e.g., Molecular Devices ImageXpress Micro XLS, ImageXpress Micro Confocal).

The graphs below show a study that combined HCI with patient-derived 3D tumor organoids (and matched normal organoids from the same patient) (Figure 2). The graph on the left demonstrates effective killing of tumor organoids by 5-FU. The graph on the right shows thinning of the epithelial cell layer of normal colorectal organoids. Such data can help to predict potential off-target effects in subsequent in vivo studies.

3D Image Analysis

Figure 2: Representative 3D Image Analysis to Measure Tumor Killing and Nonlethal Toxicities in Tumor and Normal Organoids Derived from the Same Patient: 5-FU induced killing of tumor organoids (left) and thinning of the epithelial cell layer of normal colorectal organoids (right).

Screening and HCI Readouts

When combining a HCI screening platform with 3D organoids, there are key capabilities that the platform should offer:

  • Customizable 384-well plate format
  • Measurement of 300+ morphological parameters, including number, shape, and size of organoids and nuclei, lumen formation, and infiltration of immune cells
  • Quantitative analysis of growth, morphology, proliferation, cell cycle arrest apoptosis/cell death, and toxicity
  • Functional testing of antibodies, antibody drug conjugates, small molecules, and immune cell interactions

The following table shows the differences between traditional biochemical methods and HCI for monitoring phenotypic changes:

Monitor phenotypic changes and go beyond traditional fixed endpoint assays

Crown Bioscience Available In Vitro Applications Biochemical High Content Imaging
Drug Response X X
Drug Combinations X X
Cell proliferation X X
Cytotoxicity assays X X
Cell Viablility X X
Immuno-oncology X X
Tumor & Nucleus Morphology Change   X
Epithelial Changes   X
Tumor Invasion   X
Necrosis and Apoptosis markers   X
Cell Swelling   X
Cell Cycle Analysis   X
Therapy/Target Localization   X

By seeding organoids at a density of 100-500 per well (in 384-well plates), coupled with proprietary image analysis algorithms that screen, quantify, and identify the most important therapy induced changes over 300 phenotypic attributes, the combination of HCI screening platforms with 3D organoids can be used across a wide range of important applications for oncology drug discovery purposes, including the following:

  • Characterizing phenotypic changes in tumor organoid and immune cell co-cultures to support in vitro immunotherapy development studies
  • Evaluating synergistic/additive effects of combination therapies using matrix screens
  • Evaluating tumor organoid killing with CAR-T cell co-cultures
  • Assessing compounds that preferentially inhibit tumor outgrowth by screening matched normal and tumor organoid samples
  • Developing important insights on 3D morphological features and changes and the investigational agent’s mechanism of action

Conclusion

By pairing clinically relevant 3D in vitro tumor organoids with HCI and HCA in large screening studies, researchers can develop extremely detailed cellular profiles in the context of complex cellular systems and spatial biology. Combined with dose–response studies, this enables the discovery of new highly translatable biomarkers of drug response, further supporting downstream drug development efforts.

Combining these technologies requires very skilled and experienced scientists armed with the right tools. Contact us if you have questions on how your research program may benefit from a combination of HCI and tumor organoids.

Visit Crown Bioscience’s dedicated HCI service site to learn more about how we enable researchers to advance their drug discovery and development programs.


Related Posts