<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Preclinical Consulting Services

Learn more about how our consulting services can help to support your journey to the clinic.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

Top 5 Reasons To Use Mouse Clinical Trials

Preclinical oncology drug development needs new tools and approaches. Current methods result in 95% attrition rates for cancer agents in clinical trials due to a lack of efficacy, even though the potential drugs looks highly promising in preclinical testing.

Clearly, there is a challenge that needs to be overcome. Precision and Predictive Medicine are clearly part of the solution, but in the short term new methods are needed to provide more predictive outcomes in the preclinical space. One such method is Mouse Clinical Trials, also known as MCTs. These studies use cohorts of patient-derived xenograft (PDX) models to represent a clinical study population, within a randomized, controlled, and statistically powered setting, to provide highly predictive data.

This blog post takes a look at the Top 5 reasons to try out MCTs in an oncology drug development program.

1. Mouse Clinical Trials More Closely Represent the Human Clinical Trial Situation

In human clinical trials a group of patients (each with a different background and heterogeneous disease) are treated with the same novel agent/treatment regimen – one person receives one treatment. Current preclinical methods are different – they use a small number of xenograft models with a large subject number per arm.

Therefore, the clinical and preclinical strategies don’t match up. MCTs upend the traditional preclinical paradigm and more closely match the clinical setting – using a large number of models (representing the large group of patients) in a small number of animals (representing the individual patients in the study).

This method provides a better perspective of patient-to-patient heterogeneity and the resulting data can be leveraged for biomarker discovery.

2. MCTs Use the Most Predictive Preclinical Mouse Models Available

Traditional oncology drug development has relied on cell line derived xenograft models. While these models are useful for early stage drug development, they tend to have drifted from original disease due to long term tissue culture and don’t really capture the true heterogeneity of the human clinical oncology population.

A more predictive alternative which is used in MCTs are patient-derived xenograft models, PDX are recognized as the most predictive preclinical model. They are created from patient tumors which are implanted directly in mouse models and are never manipulated to grow in vitro. A lack of selection pressure and the recapitulation of diverse patient genotypes produces a more translational model, more reflective of patient heterogeneity and response to treatment, ideal for truly understanding preclinical efficacy and providing predictive data before clinical trials.

3. PDX Mouse Clinical Trials Enable You to Discover Who Will Respond to Your Agent Before You Enter the Clinic

Using PDX models in the MCT framework provides highly predictive data on exactly which models (and in turn patients) will respond to your agent, and the reasons why. PDX models are extensively characterized allowing response and genetic background to be linked. Therefore responder and non-responder populations can be identified which can be used to guide clinical strategies and patient stratification.

4. MCTs Provide the Perfect Framework for Biomarker Discovery

As mentioned above, Mouse Clinical Trial data can be leveraged for biomarker discovery, which is ever more crucial for clinical trial success as personalized medicine progresses. MCTs allow sample collection for biomarker discovery, which, following treatment, can be classified into responders or non-responder populations and interrogated for genomic or proteomic differences between the groups.

This allows you to truly capture and leverage patient-to-patient variability preclinically, which is seen universally in the clinical setting.

5. There’s a Different Study Type to Fit a Plethora of Needs

Using an MCT doesn’t limit you to one type study. There are 1+1 and 0+1 designs available (one treatment per one model with and without a comparator arm) dependent on whether you want to more closely mimic a Phase II or Phase I study.

Then there are indication and target driven MCTS:

  • indication driven evaluates whether an agent works in only one specific type of cancer, which may be driven by a range of different mutations (like a clinical umbrella trial)
  • target drive provides robust target validation, evaluating whether a target/common genetic mutation is present across a range of cancer types, whether the target is engaged, and if there is a downstream effect (like a clinical basket trial)

Overall, this means whatever question you are trying to answer there should be a trial type to suit your needs.

Rethinking the Drug Discovery Paradigm

While it may seem daunting to tear up the rule book and rethink a drug discovery program structure, trialling a method that could drastically decrease attrition rate should always be worth a shot. Choosing to use MCTs should hopefully provide robust, predictive preclinical data to ensure appropriate clinical stratification and improved chance of clinical trial success.

Further reading on Mouse Clinical Trials:

Gao et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nature Medicine 2015;21(11): 1318-1325.


Related Posts