<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Preclinical Consulting Services

Learn more about how our consulting services can help to support your journey to the clinic.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

Why to Use Isotype Control Antibodies

How to choose isotype control antibodies, what are key features of negative isotype controls

How to choose isotype control antibodies, what are key features of negative isotype controlsGood experimental design is key to accurate and precise drug development. Isotype control antibodies, designed and deployed properly, optimize study performance and data analysis in therapeutic antibody research.

What Are Isotype Control Antibodies?

Isotype control antibodies are negative controls used to accurately measure antibody drug effects and efficacy for in vitro and in vivo monoclonal antibody (mAb) studies. Isotype controls match the test/primary antibody characteristics, but are raised against antigens not found in common preclinical species; this means that isotype controls lack specificity for the target antigen.

In both in vivo and in vitro assays, a signal can result from various binding events. In order to accurately interpret assay results, it is critical to differentiate between binding events such as:

  • mAb binding in an antigen-dependent specific manner.
  • mAb binding in a non-antigen dependent manner, due to interaction with Fc receptors (FcR) or other proteins.

Isotype control antibodies provide an ideal negative control for mAb efficacy studies, enabling researchers to accurately distinguish between non-specific background and specific antibody signal.

Why Use Isotype Control Antibodies?

In general, antibodies are very similar to each other structurally. The majority of an antibody molecule is the “constant region”, where antibodies of the same isotype share amino acid sequences. This constant region helps to mediate the antibody mechanism of action (MOA) through binding to FcRs. Only a small, hypervariable region of the mAb actually determines antigen-specific binding and intended therapeutic effect.

When testing antibodies preclinically, you need to control for any variable that might impact the interpretation of study results. Mediation of MOA and engagement of immune cells via the constant and Fc regions can have an impact on mAb efficacy. Therefore, these factors need to be accounted for within study design.

Using a matched isotype negative control (with the same host species, isotype, conjugation, light chain, and concentration as the test/primary mAb) can account for these added variables and enable more precise data analysis. Simple negative controls like PBS cannot induce the same effects, potentially creating misleading data when compared to the test article.

How are Isotype Controls Important to Drug Development?

Isotype Controls Mimic Widespread FcR Engagement Effects

Isotype control antibodies are needed in in vivo efficacy assays to mimic the widespread FcR engagement that occurs via the Fc region of the test antibody. This engagement can induce effects which will only be properly analyzed when compared with an isotype control.

For example, when testing mAb in vivo efficacy in immuno-oncology research, different degrees of tumor growth inhibition (TGI) can be calculated depending on if an isotype control or PBS is used as a negative control. Therefore, comparison of the test antibody needs to be against an isotype control to make sure the antibody effect is not over- or underestimated.

Changes in tumor infiltrating lymphocyte (TIL) populations can also be observed when comparing negative controls (isotype control v. PBS). The extent of these changes varies by which model is used, making anticipation of the effect difficult during study design. Using an appropriate control is important for immunoprofiling and analysis of downstream results.

Isotype Controls Mimic FcR and Protein Staining for Flow Cytometry

In flow cytometry experiments, test antibodies can cause non-specific staining by binding to FcRs or other proteins. As FcR expression varies across tissue type, this non-specific staining can appear highly specific, confounding the results of your study. A matched isotype control should mimic this non-specific binding and staining, allowing more precise analysis than if PBS (which won’t bind) is used.

Matching isotype control antibodies for flow cytometry experiments can be technically tricky. All isotype control comparator molecules should be fully characterized before use to avoid producing misleading results. The negative controls should match:

  • Species
  • Heavy chain
  • Light chain
  • Fluorophore conjugation as required

With this level of complexity, there is often some debate over isotype controls being used in flow cytometry experiments.

Isotype Controls are Important Negative Controls for Immunohistochemistry Experiments

Alongside in vivo studies, negative controls are also needed for assays such as immunohistochemistry (IHC). Isotype controls are the perfect negative control, provided that primary antibody concentration and isotype are matched.

Direct secondary antibody staining, or staining with a polyclonal pool from the same species as the primary, are sometimes used as negative controls. However, neither is likely to match the primary antibody isotype or replicate primary antibody binding patterns in the tissue as well as an isotype control can.

If you stain with a secondary only, you run the risk of the antibody binding directly to the slide section rather than binding to the primary/isotype control. A secondary antibody alone would not be complexed to a primary antibody, so it could have altered antigen-independent binding properties. The secondary antibody isotype could also cause an obvious difference in staining due to interacting with resident FcRs (which vary across tissue types).

Staining with a polyclonal pool as a negative control brings a separate roster of issues. This introduces a mixture of immunoglobulins which may bind to varied and additional targets, increasing background and non-specific staining events.

Choosing an Isotype Control

After selecting your primary antibody and determining what applications you’ll run, the next step is to identify whether you need a standard research grade or in vivo grade antibody.

Research Grade Isotype Controls

Standard research grade isotype controls are suitable for basic research applications like western blot, immunohistochemistry, immunoprecipitation, flow cytometry, and ELISA. They’re usually supplied in small quantities and contain preservative to extend their shelf life. Since they are not used in vivo, endotoxin and purity usually aren’t measured and it’s common that these may be polyclonal.

In Vivo Grade Isotype Controls

For in vivo research, isotype controls are most often high purity monoclonal antibodies, with very low endotoxin levels, and supplied in PBS with no carriers or additives. You may also need bulk quantities for performing in vivo studies.

Summary

Isotype control antibodies provide an ideal negative control for precise data analysis. Be sure to select a specifically designed and validated isotype control, which will provide a range of features and preferential qualities over more simple negative controls like PBS.




Related Posts