<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More

Tissue

Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More

KRAS

Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More

EGFR

Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More

Bioinformatics

Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More

CRISPR/Cas9

Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More

Genomics

Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More

Screens

Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More

Toxicology

Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Preclinical Consulting Services

Learn more about how our consulting services can help to support your journey to the clinic.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More

Resources

Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More

Blogs

Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

Scaling Up Phenotypic Drug Discovery (PDD) with High-Content Imaging (HCI)

Modern high-content imaging (HCI) and analysis platforms provide simultaneous multi-parameter visualization and quantification of thousands of cells including 3D in vitro models. This highly comprehensive information provides deep insights into the mechanisms of action, toxicity, and synergistic and off-target effects of single and combinations of compounds.

In this post, we explore the benefits of using HCI to scale up phenotypic drug discovery (PDD) strategies that allow researchers to observe and analyze drug-induced phenotypic changes using high-throughput methods.

Moving Beyond Target-Based Drug Discovery (TBDD)

Target-based drug discovery (TBDD) strategies typically involve the use of biochemical assays to evaluate binding of compounds to a known target of biological interest and ideally, disease relevance.

In contrast, PDD is conducted without prior knowledge of a specific target. Instead, it relies on the identification of compounds that induce specific phenotypic changes in cells in a physiological environment.

Historically, drug discovery was carried out using a phenotypic-based approach since the target was often unknown. However, the arrival of the genomics era led to TBDD becoming dominant as the number of ‘druggable’ molecular targets increased greatly.

Despite great successes with the TBDD approach, the focus of drug discovery efforts on single targets is thought to have contributed, in part, to high drug attrition rates. This is not entirely surprising, given that compounds often interact with multiple target proteins and pathways, producing off-target effects can negatively impact efficacy, safety and ultimately, translation to the clinic and market.

Interestingly, a comprehensive analysis showed that the contribution of phenotypic screening to the discovery of first-in-class small molecule drugs exceeded that of target-based approaches, despite the major strategy being target-based approaches. This analysis confirms that phenotypic-based approaches remain highly relevant and valuable to drug discovery efforts since they allow scientists to develop more comprehensive profiles of investigational compounds.

Scaling Up PDD with HCI

Cellular phenotypic changes are observable but complex traits are regulated by numerous intrinsic and extrinsic factors. With renewed interest in PDD, it is necessary to deploy technologies that enable data collection and analysis on a wide range of phenotypes in thousands of cells.

As described in a previous post, HCI broadly describes automated image-based high-throughput technology, while high-content analysis (HCA) refers to multiparameter algorithms applied to HCI data to provide detailed cellular physiology profiles within complex cell structures and microenvironments.

In short, relatively recent technological advances have introduced tools that are now being used to simultaneously assess many molecular parameters of individual cells using fluorescent dyes (including 3D organoids as described previously), including cellular and nuclear morphology, receptor internalization, cell viability, cell cycle status, protein aggregation, and more.

HCI requires specialized equipment and software designed to handle image acquisition and complex analyses. For instance, Crown Bioscience has established a customizable and scalable HCI platform that can be used to evaluate activity, toxicity, synergy, mode of action, and off-target effects of compounds.

The platform is compatible with:

  • 384-well plates and integrated with robotic liquid handlers (e.g., Apricot S3, CyBio Felix, and Tecan Fluent)

  • microplate and flow cytometer-based detection systems (e.g., Tecan Infinite 200 Pro, Molecular Devices SpectraMax iD3, Luminex Guava FACS)

  • advanced high-content imagers (e.g., Molecular Devices ImageXpress Micro XLS, ImageXpress Micro Confocal) that can output more than 500 phenotypic changes in a single experiment.

HCI can be used to assess a multitude of drug types including antibodies, small molecules, and antibody-drug conjugates. Compounds can be applied to cells individually or in combination with readouts designed to enhance or go beyond typical fixed endpoint assays.

For example, a simple dose response experiment with HCI-generated nuclei counts can also be designed to incorporate more than 300 additional phenotypic data points to facilitate deeper analysis. Employing HCI with dose response measurements also adds visibility to efficacy panels and provides an opportunity to discover clinically relevant biomarkers. More advanced phenotypic changes can also be evaluated such as tumor and nucleus morphology, receptor internalization, protein aggregation, epithelium formation and thickness, cell polarity, swelling, and invasion, among many others.

HCI in 3D

Although high-throughput drug screening and HCI are typically associated with traditional 2D culture systems, HCI is also used with 3D in vitro models. These models, particularly patient-derived tumor organoids, offer superior clinical relevance. Unlike 2D monolayer cultures, cells placed in a 3D environment assemble into structures that resemble native tissue morphology and physiology, exhibit genetic and phenotypic stability, and carry better predictive value of patient drug response.

Similar to traditional cell lines, organoids are also amenable to long-term storage and the generation of ‘living biobanks’ has become an invaluable tool for preclinical research. Crown Bioscience’s HCI platform includes access to a large biobank of 3D cultures (e.g., classical cell line-derived spheroids, organoids, and patient tumor-derived models) with many of these accompanied by histopathology, genomic and transcriptomic data to facilitate model selection. By analyzing hundreds of phenotypic profiles in 3D models, researchers can obtain deeper insights into a compound’s effects in vitro while closely mimicking an in vivo environment, allowing for more accurate predictions of in vivo drug responses.

The value of combining HCI with 3D organoids was recently demonstrated in a recent study by Herpers et al. (2022). The researchers screened more than 500 therapeutic antibody candidates against a panel of colorectal cancer organoids and matching normal organoids. With functional evaluation provided by HCI, a novel bispecific antibody was identified that specifically triggers EGFR degradation in LGR5+ cancer stem cells, while demonstrating minimal toxicity toward healthy LGR5+ colon stem cells.

In addition to monocultures, immune organoid co-cultures can also be used with HCI to evaluate efficacy of immuno-oncology agents. For example, compounds can be tested for their ability to modulate T cell migration into tumors, immune cell priming, tumor cell killing and myeloid cell polarization. The added value of HCI is not restricted to just oncology applications. 3D culture models have also been developed for cystopathic diseases such as autosomal dominant polycystic kidney disease and cystic fibrosis. Novel 3D lumen swelling assays provide a functional readout which is easily scalable and can be used to identify on and off-target effects of potential therapeutics.

Conclusion

HCI and HCA provide researchers with simultaneous multi-parameter visualization and quantification of thousands of cells including 3D in vitro models. These technologies are being applied to PDD strategies so researchers can develop deeper insights into a compound’s effects in vitro while closely mimicking an in vivo environment when paired with 3D models, ultimately allowing for more accurate predictions of in vivo drug responses.

Learn more about our high content imaging and analysis services here.


Related Posts