<img height="1" width="1" src="https://www.facebook.com/tr?id=1582471781774081&amp;ev=PageView &amp;noscript=1">
  • Menu
  • crown-logo-symbol-1-400x551

Find it Quickly

Get Started

Select the option that best describes what you are looking for

  • Services
  • Models
  • Scientific Information

Search Here For Services

Click Here to Start Over

Search Here For Models

Click Here to Start Over

Search Here For Scientific Information

Click Here to Start Over

In Vitro

Boost oncology drug discovery with XenoBase®, featuring the largest cell line selection and exclusive 3D organoid models. Benefit from OrganoidXplore™ and OmniScreen™ for rapid, in-depth analysis.

Learn More

In Vivo

Enhance drug development with our validated in vivo models, in vitro/ex vivo assays, and in silico modeling. Tailored solutions to optimize your candidates.

Learn More


Experience ISO-certified biobanking quality. Access top biospecimens from a global clinical network, annotated by experts for precise research.

Learn More

Biomarkers and Bioanalysis

Leverage our global labs and 150+ scientists for fast, tailored project execution. Benefit from our expertise, cutting-edge tech, and validated workflows for reliable data outcomes.

Learn More

Data Science and Bioinformatics

Harness your data and discover biomarkers with our top bioinformatics expertise. Maximize data value and gain critical insights to accelerate drug discovery and elevate projects.

Learn More


Accelerate innovative cancer treatments with our advanced models and precise drug screening for KRAS mutations, efficiently turning insights into clinical breakthroughs.

Learn More


Advance translational pharmacology with our diverse pre-clinical models, robust assays, and data science-driven biomarker analysis, multi-omics, and spatial biology.

Learn More

Drug Resistance

Our suite integrates preclinical solutions, bioanalytical read-outs, and multi-omics to uncover drug resistance markers and expedite discovery with our unique four-step strategy.

Learn More

Patient Tissue

Enhance treatments with our human tumor and mouse models, including xenografts and organoids, for accurate cancer biology representation.

Learn More


Apply the most appropriate in silico framework to your pharmacology data or historical datasets to elevate your study design and analysis, and to improve your chances of clinical success.

Learn More

Biomarker Analysis

Integrate advanced statistics into your drug development projects to gain significant biological insight into your therapeutic candidate, with our expert team of bioinformaticians.

Learn More


Accelerate your discoveries with our reliable CRISPR solutions. Our global CRISPR licenses cover an integrated drug discovery platform for in vitro and in vivo efficacy studies.

Learn More


Rely on our experienced genomics services to deliver high quality, interpretable results using highly sensitive PCR-based, real-time PCR, and NGS technologies and advanced data analytics.

Learn More

In Vitro High Content Imaging

Gain more insights into tumor growth and disease progression by leveraging our 2D and 3D fluorescence optical imaging.

Learn More

Mass Spectrometry-based Proteomics

Next-generation ion mobility mass spectrometry (MS)-based proteomics services available globally to help meet your study needs.

Learn More

Ex Vivo Patient Tissue

Gain better insight into the phenotypic response of your therapeutic candidate in organoids and ex vivo patient tissue.

Learn More

Spatial Multi-Omics Analysis

Certified CRO services with NanoString GeoMx Digital Spatial Profiling.

Learn More

Biomarker Discovery

De-risk your drug development with early identification of candidate biomarkers and utilize our biomarker discovery services to optimize clinical trial design.

Learn More

DMPK Services

Rapidly evaluate your molecule’s pharmaceutical and safety properties with our in vivo drug metabolism and pharmacokinetic (DMPK) services to select the most robust drug formulations.

Learn More

Efficacy Testing

Explore how the novel HuGEMM™ and HuCELL™ platforms can assess the efficacy of your molecule and accelerate your immuno-oncology drug discovery programs.

Learn More

Laboratory Services

Employ cutting-edge multi-omics methods to obtain accurate and comprehensive data for optimal data-based decisions.

Learn More

Pharmacology & Bioanalytical Services

Leverage our suite of structural biology services including, recombinant protein expression and protein crystallography, and target validation services including RNAi.

Learn More


Find the most appropriate screen to accelerate your drug development: discover in vivo screens with MuScreen™ and in vitro cell line screening with OmniScreen™.

Learn More


Carry out safety pharmacology studies as standalone assessments or embedded within our overall toxicological profiling to assess cardiovascular, metabolic and renal/urinary systems.

Learn More

Our Company

Global CRO in California, USA offering preclinical and translational oncology platforms with high-quality in vivo, in vitro, and ex vivo models.

Learn More

Our Purpose

Learn more about the impact we make through our scientific talent, high-quality standards, and innovation.

Learn More

Our Responsibility

We build a sustainable future by supporting employee growth, fostering leadership, and exceeding customer needs. Our values focus on innovation, social responsibility, and community well-being.

Learn More

Meet Our Leadership Team

We build a sustainable future by fostering leadership, employee growth, and exceeding customer needs with innovation and social responsibility.

Learn More

Scientific Advisory Board

Our Scientific Advisory Board of experts shapes our strategy and ensures top scientific standards in research and development.

Learn More

News & Events

Stay updated with Crown Bioscience's latest news, achievements, and announcements. Check our schedule for upcoming events and plan your visit.

Learn More

Career Opportunities

Join us for a fast-paced career addressing life science needs with innovative technologies. Thrive in a respectful, growth-focused environment.

Learn More

Scientific Publications

Access our latest scientific research and peer-reviewed articles. Discover cutting-edge findings and insights driving innovation and excellence in bioscience.

Learn More


Discover valuable insights and curated materials to support your R&D efforts. Explore the latest trends, innovations, and expertly curated content in bioscience.

Learn More


Explore our blogs for the latest insights, research breakthroughs, and industry trends. Stay educated with expert perspectives and in-depth articles driving innovation in bioscience.

Learn More

  • Platforms
  • Target Solutions
  • Technologies
  • Service Types

Put Your Glasses On, Tumor Pharmacology Goes 3D

Attrition rates in oncology drug development are higher than in other disease areas, with almost 95% of compounds showing preclinical activity failing to reach clinical development. This indicates a disconnect between current preclinical models and tumors in patients. CrownBio, in collaboration with the University of Nottingham, has recently developed a system for growing patient-derived tumor cells in 3D. These 3D assays can be used to test anticancer agents ex vivo, and they have shown a higher predictive power compared to current 2D in vitro models.

Cells that make up tissues follow complex and dynamic 3D arrangements, which are important for their physiology. The 3D architecture of a cell influences its ability to respond to external stimuli and to activate an appropriate response. Cancer cells (much like their normal counterparts) benefit from such 3D interactions with each other and with the surrounding extracellular matrix by establishing a unique growing niche, the tumor microenvironment (TME).

Cell lines grown in 2D in vitro culture or in vivo as subcutaneous tumors, are the most broadly used model, thanks to their wide availability and because they are relatively easy to work with. However the question of how well they reflect corresponding patient tumors has become more pressing, with reports of a lack of predictive power for these models. Tumor cells in 2D in vitro cultures have adapted to survive on flat plastic surfaces and have changed some of their original features.

Xenografts produced by subcutaneous implantation of cancer cells in preclinical models typically result in rapidly growing, undifferentiated tumors, which lack the architecture and biological phenotype of the tumors they are meant to represent.

Some important tumor features, e.g. specific gene expression signatures from patient tumors influencing drug sensitivity or resistance, are not always conserved in 2D cell culture or cell line derived xenografts.

Finally, the relationship of tumor cells with their TME, which is known to have a profound effect on drug efficacy, is not conserved in 2D cell cultures or in cell line derived xenografts, further suggesting that models that better capture the reality of tumor biology in situ are necessary to test drug efficacy, specially for new agents that target specific tumor molecular characteristics.

Can We Build 3D Tumors in the Lab?

In a recently published paper, researchers from the University of Nottingham in collaboration with CrownBio devised a system to grow in 3D tumor cells isolated from patient-derived xenograft (PDX) models, the most predictive preclinical models for in vivo pharmacology studies.

PDX models maintain all the original tumor characteristics and have been shown to respond to treatment similarly to patients in the clinic.

The 3D tumor growth assay (3D TGA) uses freshly isolated, fresh frozen, or primary cells derived from PDX tumors, which are grown on a scaffold structure with a very similar composition to the one found in vivo. Tumor cells are also supplemented with patient-derived cancer-associated fibroblasts (CAF), a cell type found in the TME.

The study showed that a wide range of solid tumors can be grown in 3D and that new anticancer compounds can be tested in 3D TGAs to assess their activity. Within the 3D TGA, the team was able to reproduce ex vivo mechanisms of drug resistance previously observed in vivo and, most importantly, were able to increase resistance in the presence of patient-derived CAFs for many agents. This produces a highly relevant assay for drug testing, that takes in to accountthe effect of the TME.

The study also showed that agents commonly used in the clinic had similar responses in the 3D ex vivo and patient-matched in vivo models, validating the 3D TGA as a high-throughput screen for close-to-patient tumors.

CrownBio are committed to furthering preclinical oncology research through the development of more predictive models and assays such as the 3D TGA. The 3D TGA complements other 3D assays that CrownBio already have available for anticancer agent evaluation and development.

Contact us today to receive a copy of our 3D Cell Culture Platform FactSheet and learn more about CrownBio’s 3D TGA and our range of 3D models and capabilities for in vitro and ex vivo testing of anticancer agents.

Related Posts